论文标题

使用扫描统计数据在城市环境中检测,识别和定位放射学材料

Detecting, identifying, and localizing radiological material in urban environments using scan statistics

论文作者

Porter, Michael D., Akakpo, Alphonse

论文摘要

根据扫描统计,提出了一种方法,以在城市环境中使用移动传感器检测,识别和定位非法放射学材料。我们的方法处理根据(未知)环境变化的不同级别的背景辐射。我们的方法可以准确地确定沿街道细分市场是否存在源,并确定六个可能的来源中的哪些产生了辐射。我们的方法还可以在几秒钟内将源定位到源。我们已经在一系列决策阈值中提出了结果,使利益相关者可以以不同的错误警报率评估绩效。由于我们的方法的简单性,我们的模型可以在几分钟内使用很少的培训数据进行培训,并具有实时跑步的潜力。我们的方法是“检测城市地区的放射学威胁”竞争中表现出色的最佳意见之一。

A method is proposed, based on scan statistics, to detect, identify, and localize illicit radiological material using mobile sensors in an urban environment. Our method handles varying levels of background radiation that change according to an (unknown) environment. Our method can accurately determine if a source is present along a street segment as well as identify which of six possible sources generated the radiation. Our method can also localize the source, when detected, to within a few seconds. We have presented our results across a range of decision thresholds allowing stakeholders to evaluate the performance at different false alarm rates. Due to the simplicity of our approach, our models can be trained in a few minutes with very little training data and holds the potential to score a run in real-time. Our method was one of the top performing submissions in the 'Detecting Radiological Threats in Urban Areas' competition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源