论文标题
GLSearch:通过学习搜索的最大常见子图检测
GLSearch: Maximum Common Subgraph Detection via Learning to Search
论文作者
论文摘要
在两个输入图之间检测最大的常见子图(MC)是药物合成,恶意软件检测,云计算等应用的基础。但是,MCS计算是NP-HARD,并且最先进的MCS求解器依赖于启发式搜索算法,在实践中,这些算法在实践中无法为有限的计算预算找到大型图形的良好解决方案。我们建议基于图形神经网络(GNN)的学习模型GLSearch。我们的模型建立在分支和绑定算法上,该算法从两个输入图中选择一对节点以一次扩展。我们没有使用启发式方法,而是提出了一种新型的基于GNN的深Q-Network(DQN)来选择节点对,从而使搜索过程更快,更适应性。为了进一步增强DQN的培训,我们利用搜索过程在训练阶段提供监督,并在模仿学习阶段指导我们的代理商。关于合成和现实世界大图对的实验表明,我们的模型学会了一种搜索策略,可以在相同的计算预算下检测出明显更大的常见子图。我们的GLSearch可能会扩展,以解决许多其他组合问题以及图表上的约束。
Detecting the Maximum Common Subgraph (MCS) between two input graphs is fundamental for applications in drug synthesis, malware detection, cloud computing, etc. However, MCS computation is NP-hard, and state-of-the-art MCS solvers rely on heuristic search algorithms which in practice cannot find good solution for large graph pairs given a limited computation budget. We propose GLSearch, a Graph Neural Network (GNN) based learning to search model. Our model is built upon the branch and bound algorithm, which selects one pair of nodes from the two input graphs to expand at a time. Instead of using heuristics, we propose a novel GNN-based Deep Q-Network (DQN) to select the node pair, allowing the search process faster and more adaptive. To further enhance the training of DQN, we leverage the search process to provide supervision in a pre-training stage and guide our agent during an imitation learning stage. Experiments on synthetic and real-world large graph pairs demonstrate that our model learns a search strategy that is able to detect significantly larger common subgraphs given the same computation budget. Our GLSearch can be potentially extended to solve many other combinatorial problems with constraints on graphs.