论文标题
(1+1)d理性的保形场理论中的相对异常
Relative Anomaly in (1+1)d Rational Conformal Field Theory
论文作者
论文摘要
我们研究了(1+1)d中富含对称性的有理结构田间理论(RCFT)的T HOOFT异常。这样的异常决定是否可以在具有现场对称性的真正(1+1)d系统中实现理论,还是在(2+1)d对称对称性拓扑阶段的边缘。由于对本地主要运算符的其他对称性电荷,其手性代数上具有相同对称作用的RCFT可能具有不同的hooft异常。为了计算相对异常,我们在(1+1)d非手续rCFT和(2+1)d之间建立了精确的对应关系,并具有对称间隙边界的选择。基于这些结果,我们在代数数据方面得出了相对'thooft异常的一般公式,该数据表征了设定相及其边界。
We study 't Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1+1)d. Such anomalies determine whether a theory can be realized in a truly (1+1)d system with on-site symmetry, or on the edge of a (2+1)d symmetry-protected topological phase. RCFTs with the identical symmetry actions on their chiral algebras may have different 't Hooft anomalies due to additional symmetry charges on local primary operators. To compute the relative anomaly, we establish a precise correspondence between (1+1)d non-chiral RCFTs and (2+1)d doubled symmetry-enriched topological (SET) phases with a choice of symmetric gapped boundary. Based on these results we derive a general formula for the relative 't Hooft anomaly in terms of algebraic data that characterizes the SET phase and its boundary.