论文标题
子空间胶囊网络
Subspace Capsule Network
论文作者
论文摘要
卷积神经网络(CNN)已成为AI大多数领域的关键资产。尽管表现成功,但CNN遭受了重大缺点。他们无法捕获实体不同部分之间空间关系的层次结构。为了解决这个问题,辛顿提出了胶囊的想法。在本文中,我们提出了子空间胶囊网络(SCN),该胶囊网络利用胶囊网络的概念来建模外观上可能的变化或通过一组胶囊子空间的实体属性的变化,而不是简单地将神经元分组以创建胶囊。通过使用可学习的转换将输入特征向量从下层投射到胶囊子空间上,可以创建胶囊。这种转换发现了输入与胶囊子空间建模的属性的比对程度。我们表明,SCN是一个通用胶囊网络,可以成功地应用于判别和生成模型,而无需在测试时间内与CNN相比,无需招致计算开销。通过使用生成对抗性网络(GAN)框架进行的一组全面的实验,半监督图像分类和高分辨率图像生成任务来评估SCN的有效性。 SCN在所有三个任务中都显着提高了基线模型的性能。
Convolutional neural networks (CNNs) have become a key asset to most of fields in AI. Despite their successful performance, CNNs suffer from a major drawback. They fail to capture the hierarchy of spatial relation among different parts of an entity. As a remedy to this problem, the idea of capsules was proposed by Hinton. In this paper, we propose the SubSpace Capsule Network (SCN) that exploits the idea of capsule networks to model possible variations in the appearance or implicitly defined properties of an entity through a group of capsule subspaces instead of simply grouping neurons to create capsules. A capsule is created by projecting an input feature vector from a lower layer onto the capsule subspace using a learnable transformation. This transformation finds the degree of alignment of the input with the properties modeled by the capsule subspace. We show that SCN is a general capsule network that can successfully be applied to both discriminative and generative models without incurring computational overhead compared to CNN during test time. Effectiveness of SCN is evaluated through a comprehensive set of experiments on supervised image classification, semi-supervised image classification and high-resolution image generation tasks using the generative adversarial network (GAN) framework. SCN significantly improves the performance of the baseline models in all 3 tasks.