论文标题
差异演化,可逆线性变换
Differential Evolution with Reversible Linear Transformations
论文作者
论文摘要
差异进化(DE)是一种众所周知的进化算法(EA)。与其他EA变体类似,它可能会遭受少量人群和宽松的多样性的影响。本文提出了一种缓解此问题的新方法:我们建议通过利用应用于人口的三胞胎的可逆线性转换来生成新的候选解决方案。换句话说,通过使用新生成的个体而无需评估自己的健康状况,人口会扩大。我们评估了三个问题的方法:(i)基准功能优化,(ii)发现基因抑制剂系统的参数值,(iii)学习神经网络。经验结果表明,所提出的方法的表现优于香草DE,并且在所有测试床上施加差分突变的DE版本。
Differential evolution (DE) is a well-known type of evolutionary algorithms (EA). Similarly to other EA variants it can suffer from small populations and loose diversity too quickly. This paper presents a new approach to mitigate this issue: We propose to generate new candidate solutions by utilizing reversible linear transformation applied to a triplet of solutions from the population. In other words, the population is enlarged by using newly generated individuals without evaluating their fitness. We assess our methods on three problems: (i) benchmark function optimization, (ii) discovering parameter values of the gene repressilator system, (iii) learning neural networks. The empirical results indicate that the proposed approach outperforms vanilla DE and a version of DE with applying differential mutation three times on all testbeds.