论文标题

加速线性系统求解器,用于时域组件分离宇宙微波背景数据

Accelerating linear system solvers for time domain component separation of cosmic microwave background data

论文作者

Papež, J., Grigori, L., Stompor, R.

论文摘要

组件分离是任何现代宇宙微波背景(CMB)数据分析管道的关键阶段之一。这是一个固有的非线性过程,通常涉及一系列具有相似(尽管不是相同的系统矩阵)的线性系统的顺序解决方案,该解决方案是针对同一数据集的不同数据模型得出的。例如,这种序列是在数据可能性最大化的前景参数或其后验分布的采样时出现的。但是,它们在许多其他情况下也很常见。在这项工作中,我们考虑直接在测量(时间)域中解决组件分离问题,该域在基于更标准的像素的方法中可能具有许多重要的优势,特别是如果存在不可忽略的时间域噪声相关性,则因为通常情况是这种情况。但是,基于时域的方法意味着由于需要操纵时间域数据集的全部计算工作。为了应对这一挑战,我们建议并研究适合解决基于时间域的组件分离系统及其序列的有效求解器,并且能够利用从先前的解决方案中得出的信息。这是通过调整后续系统的初始猜测或通过所谓的子空间回收来实现的,该系统允许逐步构建更有效的两级预处理。我们报告了在我们在这项工作中考虑的可能性最大化和似然抽样程序的启发的工作示例中,在分别启发的工作示例中,对解决系统的总体速度无关。

Component separation is one of the key stages of any modern, cosmic microwave background (CMB) data analysis pipeline. It is an inherently non-linear procedure and typically involves a series of sequential solutions of linear systems with similar, albeit not identical system matrices, derived for different data models of the same data set. Sequences of this kind arise for instance in the maximization of the data likelihood with respect to foreground parameters or sampling of their posterior distribution. However, they are also common in many other contexts. In this work we consider solving the component separation problem directly in the measurement (time) domain, which can have a number of important advantageous over the more standard pixel-based methods, in particular if non-negligible time-domain noise correlations are present as it is commonly the case. The time-domain based approach implies, however, significant computational effort due to the need to manipulate the full volume of time-domain data set. To address this challenge, we propose and study efficient solvers adapted to solving time-domain-based, component separation systems and their sequences and which are capable of capitalizing on information derived from the previous solutions. This is achieved either via adapting the initial guess of the subsequent system or through a so-called subspace recycling, which allows to construct progressively more efficient, two-level preconditioners. We report an overall speed-up over solving the systems independently of a factor of nearly 7, or 5, in the worked examples inspired respectively by the likelihood maximization and likelihood sampling procedures we consider in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源