论文标题

通过特定于属性的嵌入网络进行细粒度的时尚相似性学习

Fine-Grained Fashion Similarity Learning by Attribute-Specific Embedding Network

论文作者

Ma, Zhe, Dong, Jianfeng, Zhang, Yao, Long, Zhongzi, He, Yuan, Xue, Hui, Ji, Shouling

论文摘要

本文努力学习细粒度的时尚相似性。在这种相似性范式中,应该更多地关注时尚项目中特定的设计/属性的相似性,这在许多相关的时尚应用程序(例如时尚版权保护)中具有潜在的价值。为此,我们提出了一个特定于属性的嵌入网络(ASEN),以端到端的方式共同学习多个属性特异性嵌入,从而测量相应空间中的细粒度相似性。 ASEN凭借两个注意模块,即属性感知的空间注意力和属性感知的通道注意,因此能够找到相关区域并在指定属性的指导下捕获基本模式,从而使学习的属性特异性嵌入更好地反映了细粒度的相似性。在四个与时尚相关的数据集上进行了广泛的实验,显示了Asen对精细粒度时尚相似性学习的有效性及其在时尚重读的潜力。

This paper strives to learn fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute among fashion items, which has potential values in many fashion related applications such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings in an end-to-end manner, thus measure the fine-grained similarity in the corresponding space. With two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention, ASEN is able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on four fashion-related datasets show the effectiveness of ASEN for fine-grained fashion similarity learning and its potential for fashion reranking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源