论文标题

通过颞小脑学习,在模拟鼠标中对后肢运动的自适应控制

Adaptive control for hindlimb locomotion in a simulated mouse through temporal cerebellar learning

论文作者

Jensen, T. P., Tata, S., Ijspeert, A. J., Tolu, S.

论文摘要

人类和其他脊椎动物在运动方面表现出了显着的性能和效率,但其生物控制系统的运动功能仍然只能部分理解。脊髓中的中央模式发生器(CPG)提供了运动的基本模式和时间。众所周知,小脑在自适应运动中起着重要作用。最近的研究已经深入了解了负责推动小脑适应运动的误差信号。但是,小脑输出如何影响步态的问题仍未得到解答。我们假设小脑校正应用于CpG的模式形成部分。在这里,提出了一个以生物启发的控制系统,用于小鼠的肌肉骨骼系统的自适应运动,其中小脑样模块通过使用双重支持Interbybymmetry不对称作为时间教学信号来适应阶梯时间。在拆分带皮带的跑步机设置中,在模拟鼠标上测试了控制系统,类似于实际小鼠实验中使用的系统。结果表明,与人类和小鼠相似的跨越参数中的适应性运动行为。控制系统自适应地减少了由于拆分条款方案中环境扰动而发生的双重支持不对称。

Human beings and other vertebrates show remarkable performance and efficiency in locomotion, but the functioning of their biological control systems for locomotion is still only partially understood. The basic patterns and timing for locomotion are provided by a central pattern generator (CPG) in the spinal cord. The cerebellum is known to play an important role in adaptive locomotion. Recent studies have given insights into the error signals responsible for driving the cerebellar adaptation in locomotion. However, the question of how the cerebellar output influences the gait remains unanswered. We hypothesize that the cerebellar correction is applied to the pattern formation part of the CPG. Here, a bio-inspired control system for adaptive locomotion of the musculoskeletal system of the mouse is presented, where a cerebellar-like module adapts the step time by using the double support interlimb asymmetry as a temporal teaching signal. The control system is tested on a simulated mouse in a split-belt treadmill setup similar to those used in experiments with real mice. The results show adaptive locomotion behavior in the interlimb parameters similar to that seen in humans and mice. The control system adaptively decreases the double support asymmetry that occurs due to environmental perturbations in the split-belt protocol.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源