论文标题

pllay:基于持久性景观的有效拓扑层

PLLay: Efficient Topological Layer based on Persistence Landscapes

论文作者

Kim, Kwangho, Kim, Jisu, Zaheer, Manzil, Kim, Joon Sik, Chazal, Frederic, Wasserman, Larry

论文摘要

我们提出了基于持久性景观的一般深度学习模型的新型拓扑层,我们可以有效利用输入数据结构的基本拓扑特征。在这项工作中,我们在层输入方面显示了不同的性能,对于具有任意过滤的一般持续同源性。因此,我们所提出的一层可以放置在网络中的任何地方,并将输入数据的拓扑特征的关键信息提供到后续层中,以提高网络对给定任务的可学习性。在通过反向传播训练期间,在不需要任何输入功能或数据预处理的情况下,在训练过程中学习了PLLOA的任务最佳结构。我们为基于DTM函数的过滤提供了一种新颖的适应性,并通过稳定性分析表明,该层对噪声和异常值具有鲁棒性。我们通过在各种数据集上的分类实验来证明我们的方法的有效性。

We propose PLLay, a novel topological layer for general deep learning models based on persistence landscapes, in which we can efficiently exploit the underlying topological features of the input data structure. In this work, we show differentiability with respect to layer inputs, for a general persistent homology with arbitrary filtration. Thus, our proposed layer can be placed anywhere in the network and feed critical information on the topological features of input data into subsequent layers to improve the learnability of the networks toward a given task. A task-optimal structure of PLLay is learned during training via backpropagation, without requiring any input featurization or data preprocessing. We provide a novel adaptation for the DTM function-based filtration, and show that the proposed layer is robust against noise and outliers through a stability analysis. We demonstrate the effectiveness of our approach by classification experiments on various datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源