论文标题
爱因斯坦框架中的稳定性是否保证了约旦框架的稳定性?
Does stability in Einstein frame guarantee stability in Jordan frame?
论文作者
论文摘要
标量张量重力理论可以在爱因斯坦或约旦框架中提出,这些理论通过共形转换而言。尽管两个帧描述了相同的物理,并且是等效的,但两个帧中场方程的稳定性并不相同。在这里,我们将动态系统和相空间方法作为研究此问题的鲁棒性工具。我们专注于Brans Dicke理论,但结果很容易被推广。我们的分析表明,虽然两个帧中的临界点之间存在一一对应关系,而一个帧中的每个临界点都映射到另一帧中,但是一个帧中关键点的稳定性并不能使另一帧中的稳定性在另一个帧中给予。因此,一个帧中不稳定的点可以映射到另一帧中的稳定点。一个帧中相位空间中两个关键点之间的所有轨迹都与其他轨迹不同。这表明变量和宇宙学参数的动态行为在两个帧中是不同的。因此,对于关注观测测量的研究特征,我们必须使用(JF)实验数据具有通常的解释的(JF)
Scalar tensor theories of gravity can be formulated in the Einstein or in the Jordan frame, which are related by the conformal transformations. Although the two frames are describe the same physics, and are equivalent, the stability of the field equations in two frames are not the same. Here we implement dynamical system and phase space approach as a robustness tool to investigate this issue. We concentrate on the Brans Dicke theory, but the results can easily be generalized. Our analysis show that while there is one-to-one correspondence between critical points in two frames and each critical point in one frame is mapped to its corresponds in other frame , however stability of a critical points in one frame does not grantee the stability in other frame. Hence an unstable point in one frame may be mapped to a stable point in other frame. All trajectories between two critical points in phase space in one frame are different from their corresponds in other ones. This indicates that the dynamical behavior of variables and cosmological parameters are different in two frames. Hence for those features of the study which focus on observational measurements we must use the (JF) where experimental data have their usual interpretation