论文标题
5G向Sub-Thz通信的新无线电演变
5G New Radio Evolution Towards Sub-THz Communications
论文作者
论文摘要
在本文中,研究了扩展5G新无线电层解决方案以支持Sub-Thz频率通信的潜力。更具体地说,我们介绍了与52.6 GHz以上的频率相关的第三代伙伴关系项目研究的状态,并注意到联邦通信委员会(FCC)(FCC)与95 GHz -3 THZ频率频段相关的实验许可提供的最新提案。然后,我们回顾了功率放大器(PA)效率和输出功率挑战,以及在受支持的波形方面增加的相位噪声(PN)失真效应。从PN鲁棒性的角度来看,作为波形和命理设计的实际示例,提供了使用90 GHz载体频率的链路性能结果。数值结果表明,需要新的,更高的子载波间距来支持高吞吐量,这需要更大的物理层设计变化。还观察到需要新的相跟踪参考信号设计才能使系统对PN进行稳健。结果表明,与PN相比,单载波频差多次访问对PN明显更强大,并且可以提供更大的PA输出功率,因此,对于循环前缀正交频施加多路复用,这是Sub-Thz通信的高电位波形。
In this paper, the potential of extending 5G New Radio physical layer solutions to support communications in sub-THz frequencies is studied. More specifically, we introduce the status of third generation partnership project studies related to operation on frequencies beyond 52.6 GHz and note also the recent proposal on spectrum horizons provided by federal communications commission (FCC) related to experimental licenses on 95 GHz - 3 THz frequency band. Then, we review the power amplifier (PA) efficiency and output power challenge together with the increased phase noise (PN) distortion effect in terms of the supported waveforms. As a practical example on the waveform and numerology design from the perspective of the PN robustness, link performance results using 90 GHz carrier frequency are provided. The numerical results demonstrate that new, higher subcarrier spacings are required to support high throughput, which requires larger changes in the physical layer design. It is also observed that new phase-tracking reference signal designs are required to make the system robust against PN. The results illustrate that single-carrier frequency division multiple access is significantly more robust against PN and can provide clearly larger PA output power than cyclic-prefix orthogonal frequency division multiplexing, and is therefore a highly potential waveform for sub-THz communications.