论文标题
实时评论的多模式匹配变压器
Multimodal Matching Transformer for Live Commenting
论文作者
论文摘要
自动现场评论旨在为观众提供有关视频的实时评论。它鼓励用户参与在线视频网站,也是视频到文本生成的良好基准。有关此任务的最新工作采用编码器模型来生成评论。但是,这些方法不会明确地对视频和评论之间的互动进行建模,因此它们倾向于产生通常与视频无关的流行评论。在这项工作中,我们旨在通过对不同方式之间的跨模式相互作用进行建模,以提高现场评论和视频之间的相关性。为此,我们提出了一个多模式匹配的变压器,以捕获评论,视觉和音频之间的关系。所提出的模型基于变压器框架,可以迭代地学习每种模式的注意力感知表示形式。我们在公开可用的现场评论数据集上评估了该模型。实验表明,多模式匹配变压器模型优于最新方法。
Automatic live commenting aims to provide real-time comments on videos for viewers. It encourages users engagement on online video sites, and is also a good benchmark for video-to-text generation. Recent work on this task adopts encoder-decoder models to generate comments. However, these methods do not model the interaction between videos and comments explicitly, so they tend to generate popular comments that are often irrelevant to the videos. In this work, we aim to improve the relevance between live comments and videos by modeling the cross-modal interactions among different modalities. To this end, we propose a multimodal matching transformer to capture the relationships among comments, vision, and audio. The proposed model is based on the transformer framework and can iteratively learn the attention-aware representations for each modality. We evaluate the model on a publicly available live commenting dataset. Experiments show that the multimodal matching transformer model outperforms the state-of-the-art methods.