论文标题
神经影像学研究中广义加性模型的荟萃分析
Meta-Analysis of Generalized Additive Models in Neuroimaging Studies
论文作者
论文摘要
分析来自多个神经影像学研究的数据在增加统计能力方面具有很大的潜力,可以分别分析每个研究时能够检测到较小的幅度效果,并且还可以系统地研究研究之间的差异。由于隐私或专有数据以及更实际的问题而造成的限制可能会使很难共享神经成像数据集,从而使分析共同位置中的所有数据可能是不切实际的或不可能的。荟萃分析方法通过组合诸如模型参数或风险比率之类的汇总数量来克服这一问题。大多数荟萃分析的工具都集中在参数统计模型上,以及用于元分析的半参数模型(如广义加性模型)的方法尚未得到很好的发展。参数模型通常在神经影像中不合适,例如,年龄 - 脑关系可能会使用这种模型难以准确描述的形式。在本文中,我们介绍了Meta-GAM,这是一种不需要单个参与者数据的通用添加剂模型的荟萃分析的方法,因此适合在维护隐私和其他监管问题的同时增加统计功率。我们通过启用多个模型项以及多元平滑函数的分析来扩展以前的工作。此外,我们还展示了如何以平滑的术语计算元分析$ P $值。所提出的方法在模拟实验中表现出很好的表现,并在有关海马体积和来自救生脑联盟的自我报告的睡眠质量数据的真实数据分析中得到了证明。我们认为,元gam的应用在寿命神经科学和成像遗传学中尤其有益。这些方法是在随附的r软件包\动词!metagam!中实现的,该方法也已被演示。
Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately and also allowing to systematically investigate between-study differences. Restrictions due to privacy or proprietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta-analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models like generalized additive models have not been well developed. Parametric models are often not appropriate in neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive models which does not require individual participant data, and hence is suitable for increasing statistical power while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic $p$-values can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience and imaging genetics. The methods are implemented in an accompanying R package \verb!metagam!, which is also demonstrated.