论文标题
甲骨文对子因素的有条件期望的可计算性
Oracle computability of conditional expectations onto subfactors
论文作者
论文摘要
我们将有条件期望的有效研究启动到子因子上。我们的主要结果是,如果$ m $是具有w-光谱间隙亚比例$ n $的生存关闭的II $ _1 $ factor,那么可以从(Turing)Oracle中计算出有条件的期望功能,该功能可以计算出$ M $的(Turing)Oracle,该功能将$ M $,将$ N $包含在$ M $中,以及$ m $的零件差距$(M $)$(M $)$(M $(M)$(M,N)。
We initiate the effective study of conditional expectations onto subfactors. Our main result is that if $M$ is an existentially closed II$_1$ factor with a w-spectral gap subfactor $N$, then the conditional expectation function onto $N$ can be computed from a (Turing) oracle that computes a presentation of $M$, the inclusion of $N$ into $M$, and a spectral gap function for the pair $(M,N)$.