论文标题
范德华异质结构的激子G因第一原理计算
Exciton g-factors of van der Waals heterostructures from first principles calculations
论文作者
论文摘要
外部字段是探测材料中光激发的强大工具。磁场中激发的线性能移动是通过其有效的G因子来量化的。在这里,我们展示了如何通过收敛的第一原理计算来确定激子G因子及其符号。我们将该方法应用于半导体金属二分法中的单层激子,并将方法应用于Mose $ _2 $/WSE $ _2 $ HeteroBilayers中的层中激子,并与最近的实验数据达成了良好的一致性。我们方法的精度允许将光峰的测得的G因子分配给带结构中的特定过渡,并将其分配给样品的特定区域。这揭示了各种以前测量的层间激子峰的性质。我们进一步表明,由于特定的光学选择规则,Van der Waals异质结构中的G因子非常依赖于自旋和堆叠依赖性。轨道角动量的计算需要在数百个频段上进行求和,这表明对于所考虑的二维材料,基集大小是一个关键的数值问题。提出的方法可能会应用于多种半导体。
External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g-factor. Here we show how exciton g-factors and their sign can be determined by converged first principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe$_2$/WSe$_2$ heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows to assign measured g-factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g-factors in van der Waals heterostructures are strongly spin- and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.