论文标题
在双层MOS $ _2 $中巨大的史塔克分裂
Giant Stark splitting of an exciton in bilayer MoS$_2$
论文作者
论文摘要
过渡金属二分裂基因元素(TMDS)构成了用于原子薄的光电设备和自旋 - 瓦利内存应用的多功能平台。在单层中,光吸收很强,但是过渡能不可调节,因为中性激子基本上没有平面外电偶极子。相比之下,杂波中的层间激子转变在应用的电场中广泛可调,但它们与光的耦合大大降低。在这里,我们显示了在双层MOS2中具有高振荡器强度的120 MEV层间激子。这些移位是由于量子限制的恒星效应所致,这里将电子定位于其中一个层,但孔在双层层上被离域。我们可以光学地探测内部和间层中激素之间的相互作用,因为它们可以通过能量调整为共振。这允许研究其混合,并由超出标准密度功能理论计算超出包括激子效应的计算。在MOS2 TriLayers中,我们的实验分别发现了两种具有和无内置电偶极子的层间激子。具有较大的振荡器强度和内置偶极子的高度可调的激子过渡,从而导致了相当大的激子相互作用,这对于与Polaritons的非线性光学器件具有巨大的希望。
Transition metal dichalcogenides (TMDs) constitute a versatile platform for atomically thin optoelectronics devices and spin-valley memory applications. In monolayers optical absorption is strong, but the transition energy is not tunable as the neutral exciton has essentially no out-of-plane electric dipole. In contrast, interlayer exciton transitions in heterobilayers are widely tunable in applied electric fields, but their coupling to light is considerably reduced. Here, we show tuning over 120 meV of interlayer excitons with high oscillator strength in bilayer MoS2. These shifts are due to the quantum confined Stark effect, here the electron is localised to one of the layers yet the hole is delocalised across the bilayer. We optically probe the interaction between intra- and interlayer excitons as they are energetically tuned into resonance. This allows studying their mixing supported by beyond standard density functional theory calculations including excitonic effects. In MoS2 trilayers our experiments uncover two types of interlayer excitons with and without in-built electric dipoles, respectively. Highly tunable excitonic transitions with large oscillator strength and in-built dipoles, that lead to considerable exciton-exciton interactions, hold great promise for non-linear optics with polaritons.