论文标题

抛物线几何形状中的特殊指标和尺度

Special metrics and scales in parabolic geometry

论文作者

Eastwood, Michael, Zalabová, Lenka

论文摘要

鉴于抛物线几何形状,有时可以找到以某些不变条件为特征的特殊指标。例如,在保形几何形状中,一个人要求在形式类别中使用爱因斯坦度量。爱因斯坦指标具有特殊特性,即从抛物线几何形状的意义上将其大地测量学被区分为无参数曲线。该属性是爱因斯坦指标的特征。在本文中,我们启动了针对其他抛物线几何形状的相应现象的研究,尤其是针对Hypersurface CR和接触典礼案例的研究。

Given a parabolic geometry, it is sometimes possible to find special metrics characterised by some invariant conditions. In conformal geometry, for example, one asks for an Einstein metric in the conformal class. Einstein metrics have the special property that their geodesics are distinguished, as unparameterised curves, in the sense of parabolic geometry. This property characterises the Einstein metrics. In this article we initiate a study of corresponding phenomena for other parabolic geometries, in particular for the hypersurface CR and contact Legendrean cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源