论文标题
关于$ bt $ bt^n-a $的变量的取消,仿射普通域
On cancellation of variables of the form $bT^n-a$ over affine normal domains
论文作者
论文摘要
在本文中,我们将D. Wright的取消定理扩展到了仿射正常域的情况。我们将表明,如果$ a $是noetherian普通域$ r $的代数,则包含一个字段$ k $,如果$ a [t] = r^{[3]} $,则$ a = r^{[2]} $,仅当$ a [t] $的$ bt $ bt $ ch $ ch $ ch $ ch $ a bt $ ch y,bt \ nmid n $。
In this article we extend a cancellation theorem of D. Wright to the case of affine normal domains. We shall show that if $A$ is an algebra over a Noetherian normal domain $R$ containing a field $k$ and if $A[T ] = R^{[3]}$, then $A = R^{[2]}$ if and only if $A[T]$ has a variable of the form $bT^n - a$ for some $a, b \in A$ with $n \ge 2$ and $ch(k) \nmid n$.