论文标题

牛顿多面体和良好的紧凑定理

Newton polyhedra and good compactification theorem

论文作者

Khovanskii, Askold

论文摘要

提出了复杂圆环$(\ bbb c^*)^n $的新透明证明。该定理为复杂的圆环中的次要体提供了强大的工具。该论文还包含一种算法,该算法在$(\ bbb c^*)中构建了一个良好的压缩,由方程式系统明确定义。陈述了在摩托类似的紧凑型上的新定理。良好的紧凑定理的这种概括的透明证明与本文的证明和结构相似,将在即将出版的出版物中介绍。

A new transparent proof of the well known good compactification theorem for the complex torus $(\Bbb C^*)^n$ is presented. This theorem provides a powerful tool in enumerative geometry for subvarieties in the complex torus. The paper also contains an algorithm constructing a good compactification for a subvariety in $(\Bbb C^*)^n$ explicitly defined by a system of equations. A new theorem on a torodoidal like compactification is stated. A transparent proof of this generalization of the good compactification theorem which is similar to proofs and constructions from this paper will be presented in a forthcoming publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源