论文标题

Rényi熵在主动学习成本绩效的权衡方面界限

Rényi Entropy Bounds on the Active Learning Cost-Performance Tradeoff

论文作者

Jamali, Vahid, Tulino, Antonia, Llorca, Jaime, Erkip, Elza

论文摘要

半监督分类是机器学习中最突出的领域之一,它研究了如何将通常丰富的未标记数据与通常有限的标记数据结合在一起,以最大程度地提高整体分类精度。在这种情况下,主动选择要标记的数据的过程称为主动学习。在本文中,我们使用积极获得的标记数据启动了半监督分类的最佳策略的非质子分析。考虑到一般的贝叶斯分类模型,我们提供了共同最佳的主动学习和半监督分类政策的首次表征,这是由标签查询预算(要标记的数据项数量)和整体分类精度所驱动的成本绩效折衷。利用Rényi熵的最新结果,我们在这种主动学习成本绩效的权衡方面得出了紧密的信息理论界限。

Semi-supervised classification, one of the most prominent fields in machine learning, studies how to combine the statistical knowledge of the often abundant unlabeled data with the often limited labeled data in order to maximize overall classification accuracy. In this context, the process of actively choosing the data to be labeled is referred to as active learning. In this paper, we initiate the non-asymptotic analysis of the optimal policy for semi-supervised classification with actively obtained labeled data. Considering a general Bayesian classification model, we provide the first characterization of the jointly optimal active learning and semi-supervised classification policy, in terms of the cost-performance tradeoff driven by the label query budget (number of data items to be labeled) and overall classification accuracy. Leveraging recent results on the Rényi Entropy, we derive tight information-theoretic bounds on such active learning cost-performance tradeoff.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源