论文标题
在有限字段上的某些指数总和的l函数
L-functions of Certain Exponential Sums over Finite Fields
论文作者
论文摘要
在本文中,我们完全确定了由分析数理论引起的重要指数总和的L功能的斜率和权重。我们的主要工具包括Adolphson-Sperber关于曲折指数总和的工作以及WAN的分解定理。我们主要结果的结果之一是对这些指数总和进行了尖锐的估计。另一个结果是获得了Adolphson-Sperber对曲折指数总和的猜想的明确反例。
In this paper, we completely determine the slopes and weights of the L-functions of an important class of exponential sums arising from analytic number theory. Our main tools include Adolphson-Sperber's work on toric exponential sums and Wan's decomposition theorems. One consequence of our main result is a sharp estimate of these exponential sums. Another consequence is to obtain an explicit counterexample of Adolphson-Sperber's conjecture on weights of toric exponential sums.