论文标题
天文弱透镜的暗物质子结构的首先结果
First Results on Dark Matter Substructure from Astrometric Weak Lensing
论文作者
论文摘要
暗物质的低质量结构(DM)预计将完全没有发光区域和重子。正是由于缺乏重型反馈,银河系的小规模子结构是一个相对原始的测试地面,用于发现DM Microphysics的方面和对亚乳光尺度上的原始波动。在这项工作中,我们报告了第一次搜索银河系DM Subhalos,并使用时间域天文型弱重力透镜。该分析基于局部透镜校正的匹配过滤器模板,以对麦哲伦云中恒星的正确运动。我们描述了一个数据分析管道,详细说明样本选择,背景减法以及处理异常值和其他系统学。对于暂定的候选镜头,我们根据异常的视差模板确定签名,该模板可以明确确认DM镜头的存在,从而通过全日制序列数据为强大的发现潜力开放了前景。 We present our constraints on substructure fraction $f_l \lesssim 5$ at 90% CL (and $f_l \lesssim 2$ at 50% CL) for compact lenses with radii $r_l < 1\,\mathrm{pc}$, with best sensitivity reached for lens masses $M_l$ around $10^7$-$10^8\,M_\odot$.未来的天文数据集预期有望进行参数改进;在任务结束时,对于这些巨大的点状对象,$ Gaia $可以达到$ f_l \ lyssim 10^{ - 3} $,并且对于$ \ Mathcal {O}(O}(1)$子结构分数,对更轻和/或更多扩展Subhalos敏感。
Low-mass structures of dark matter (DM) are expected to be entirely devoid of light-emitting regions and baryons. Precisely because of this lack of baryonic feedback, small-scale substructures of the Milky Way are a relatively pristine testing ground for discovering aspects of DM microphysics and primordial fluctuations on subgalactic scales. In this work, we report results from the first search for Galactic DM subhalos with time-domain astrometric weak gravitational lensing. The analysis is based on a matched-filter template of local lensing corrections to the proper motion of stars in the Magellanic Clouds. We describe a data analysis pipeline detailing sample selection, background subtraction, and handling outliers and other systematics. For tentative candidate lenses, we identify a signature based on an anomalous parallax template that can unequivocally confirm the presence of a DM lens, opening up prospects for robust discovery potential with full time-series data. We present our constraints on substructure fraction $f_l \lesssim 5$ at 90% CL (and $f_l \lesssim 2$ at 50% CL) for compact lenses with radii $r_l < 1\,\mathrm{pc}$, with best sensitivity reached for lens masses $M_l$ around $10^7$-$10^8\,M_\odot$. Parametric improvements are expected with future astrometric data sets; by end of mission, $Gaia$ could reach $f_l \lesssim 10^{-3}$ for these massive point-like objects, and be sensitive to lighter and/or more extended subhalos for $\mathcal{O}(1)$ substructure fractions.