论文标题
多域和非共同品种中的子模块
Submodules in polydomains and noncommutative varieties
论文作者
论文摘要
Fock空间的张量产品类似于单位polydisc上的强大空间。这在非共同的多域和非交通性品种的意义上在非共同操作者理论和功能理论的发展中起着重要作用。在本文中,我们研究了完整的Fock空间和非交通性品种的张量产物的关节不变子空间。我们还特别使用非交通品品种的技术获得了$ n $ fold张量产品的联合不变子空间的分类。
Tensor product of Fock spaces is analogous to the Hardy space over the unit polydisc. This plays an important role in the development of noncommutative operator theory and function theory in the sense of noncommutative polydomains and noncommutative varieties. In this paper we study joint invariant subspaces of tensor product of full Fock spaces and noncommutative varieties. We also obtain, in particular, by using techniques of noncommutative varieties, a classification of joint invariant subspaces of $n$-fold tensor products of Drury-Arveson spaces.