论文标题
大数据应用的质量保证技术:系统文献综述
Quality Assurance Technologies of Big Data Applications: A Systematic Literature Review
论文作者
论文摘要
当前,大数据应用程序在许多应用程序领域中都使用,从统计应用程序到预测系统和智能城市。但是,这些应用的质量远非完美,导致了大量问题和问题。因此,确保大数据应用程序的总体质量起着越来越重要的作用。本文旨在总结和评估解决大数据应用中质量问题的现有质量保证(QA)技术。我们通过搜索主要的科学数据库进行了系统的文献综述(SLR),从而对大数据应用进行了83项主要和相关的研究。 SLR结果揭示了以下主要发现:1)数量,速度和多样性的大数据属性对大数据应用的质量的影响; 2)确定大数据应用质量的质量属性包括正确性,性能,可用性,可伸缩性,可靠性等; 3)现有的质量检查技术,包括分析,规范,模型驱动体系结构(MDA),验证,容错,测试,监视和故障和故障预测; 4)每种质量检查技术的现有优势和局限性; 5)每种质量检查技术的现有经验证据。这项研究为研究大数据应用的质量检查技术提供了坚实的基础。但是,关于质量的大数据应用程序的许多挑战仍然存在。
Big data applications are currently used in many application domains, ranging from statistical applications to prediction systems and smart cities. However, the quality of these applications is far from perfect, leading to a large amount of issues and problems. Consequently, assuring the overall quality for big data applications plays an increasingly important role. This paper aims at summarizing and assessing existing quality assurance (QA) technologies addressing quality issues in big data applications. We have conducted a systematic literature review (SLR) by searching major scientific databases, resulting in 83 primary and relevant studies on QA technologies for big data applications. The SLR results reveal the following main findings: 1) the impact of the big data attributes of volume, velocity, and variety on the quality of big data applications; 2) the quality attributes that determine the quality for big data applications include correctness, performance, availability, scalability, reliability and so on; 3) the existing QA technologies, including analysis, specification, model-driven architecture (MDA), verification, fault tolerance, testing, monitoring and fault & failure prediction; 4) existing strengths and limitations of each kind of QA technology; 5) the existing empirical evidence of each QA technology. This study provides a solid foundation for research on QA technologies of big data applications. However, many challenges of big data applications regarding quality still remain.