论文标题

相互作用的随机拓扑结构和莫特从光反应过渡

Interacting Stochastic Topology and Mott Transition from Light Response

论文作者

Klein, Philipp W., Grushin, Adolfo G., Hur, Karyn Le

论文摘要

我们对相互作用的Chern绝缘子中的拓扑特性进行了随机描述。我们通过均值矩阵重新归一化组的结果和金茨堡 - 兰道的参数支持,我们在蜂窝几何形状的相互作用的haldane模型中证实了莫特过渡的一阶性质。从Bloch球体中,我们可以预测与晶格上量子霍尔电导率相关的光的圆形二色性,并在存在相互作用的情况下进行预测。该分析表明,拓扑数可以从狄拉克点的光响应中测量。电子 - 电子相互作用还可以在带隙上方产生大量的粒子孔对,这使我们提出了“随机Chern数”作为拓扑的相互作用度量。随机Chern数可以描述具有波动交错潜力的无序情况,我们在相互作用诱导的粒子孔对和温度效应之间建立了类比。我们的随机方法在物理上是直观的,易于实施的,并为进一步的相互作用效应带来了途径。

We develop a stochastic description of the topological properties in an interacting Chern insulator. We confirm the Mott transition's first-order nature in the interacting Haldane model on the honeycomb geometry, from a mean-field variational approach, supported by density matrix renormalization group results and Ginzburg-Landau arguments. From the Bloch sphere, we make predictions for circular dichroism of light related to the quantum Hall conductivity on the lattice and in the presence of interactions. This analysis shows that the topological number can be measured from the light response at the Dirac points. Electron-electron interactions can also produce a substantial number of particle-hole pairs above the band gap, which leads us to propose a "stochastic Chern number" as an interacting measure of the topology. The stochastic Chern number can describe disordered situations with a fluctuating staggered potential and we build an analogy between interaction-induced particle-hole pairs and temperature effects. Our stochastic approach is physically intuitive, easy to implement and leads the way to further studies of interaction effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源