论文标题
MAGNN:用于异质图嵌入的Metapath汇总图神经网络
MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
论文作者
论文摘要
大量的现实图形或网络本质上是异质的,涉及各种节点类型和关系类型。异质图嵌入是将异质图的丰富结构和语义信息嵌入到低维节点表示中。现有模型通常在异质图中定义多个元素,以捕获复合关系并指导邻居选择。但是,这些模型要么省略节点内容特征,要么丢弃沿Metapath的中间节点,要么仅考虑一个Metapath。为了解决这三个限制,我们提出了一个名为Metapath聚合图神经网络(MAGNN)的新模型,以提高最终性能。具体而言,MAGNN采用三个主要组件,即节点含量转换来封装输入节点属性,内部核内聚合以结合了中间语义节点,并结合了metapath聚合以组合来自多个Metapaths的消息。在三个现实世界的异质图数据集上进行节点分类,节点群集和链接预测的大量实验表明,Magnn比最先进的基线实现了更准确的预测结果。
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.