论文标题

知识联合会:一个统一和层次的隐私AI框架

Knowledge Federation: A Unified and Hierarchical Privacy-Preserving AI Framework

论文作者

Li, Hongyu, Meng, Dan, Wang, Hong, Li, Xiaolin

论文摘要

通过严格的数据隐私和安全法规,基于集中式数据集的常规机器学习面临着重大挑战,使人工智能(AI)在许多关键任务和数据敏感的场景(例如财务,政府和健康)中不切实际。同时,在各个行业,组织,组织的不同单位或国际组织的不同分支机构中,巨大的数据集分散在孤立的孤岛中。这些有价值的数据资源未充分利用。为了推进AI理论和应用程序,我们提出了一个综合框架(称为知识联合会-KF),以通过在保留数据隐私和所有权的同时启用AI来解决这些挑战。除了联合学习和安全多方计算的概念之外,KF还包括四个级别的联邦:(1)信息级别,低级统计和数据的计算,满足简单查询,搜索和简单操作员的要求; (2)模型水平,支持培训,学习和推论; (3)认知水平,在各个级别的抽象和上下文中启用抽象特征表示; (4)知识水平,融合知识发现,表示和推理。我们进一步阐明了知识联合会与其他相关研究领域之间的关系和差异。我们已经开发了称为IBOND平台的KF的参考实施,以提供生产质量的KF平台来启用金融工业应用,Insurance等人。 ibond平台还将帮助建立KF社区,并建立一个全面的生态系统,并迎来了一种新颖的范式向安全,保护隐私和负责任的AI转变。据我们所知,知识联合会是安全多方计算和学习的第一个层次结构和统一框架。

With strict protections and regulations of data privacy and security, conventional machine learning based on centralized datasets is confronted with significant challenges, making artificial intelligence (AI) impractical in many mission-critical and data-sensitive scenarios, such as finance, government, and health. In the meantime, tremendous datasets are scattered in isolated silos in various industries, organizations, different units of an organization, or different branches of an international organization. These valuable data resources are well underused. To advance AI theories and applications, we propose a comprehensive framework (called Knowledge Federation - KF) to address these challenges by enabling AI while preserving data privacy and ownership. Beyond the concepts of federated learning and secure multi-party computation, KF consists of four levels of federation: (1) information level, low-level statistics and computation of data, meeting the requirements of simple queries, searching and simplistic operators; (2) model level, supporting training, learning, and inference; (3) cognition level, enabling abstract feature representation at various levels of abstractions and contexts; (4) knowledge level, fusing knowledge discovery, representation, and reasoning. We further clarify the relationship and differentiation between knowledge federation and other related research areas. We have developed a reference implementation of KF, called iBond Platform, to offer a production-quality KF platform to enable industrial applications in finance, insurance et al. The iBond platform will also help establish the KF community and a comprehensive ecosystem and usher in a novel paradigm shift towards secure, privacy-preserving and responsible AI. As far as we know, knowledge federation is the first hierarchical and unified framework for secure multi-party computing and learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源