论文标题

亚历山大模块上的混合霍奇结构

Mixed Hodge Structures on Alexander Modules

论文作者

Elduque, Eva, Geske, Christian, Cueto, Moisés Herradón, Maxim, Laurentiu, Wang, Botong

论文摘要

由极限混合霍奇结构在高表面奇异性胚芽的Milnor纤维上进行的,我们在亚历山大模块的扭转部分上构建了自然混合的霍奇结构。更确切地说,让$ u $成为平稳的连接复杂的代数品种,让$ f \ colon u \ to \ mathbb {c}^*$成为一个代数地图,诱导基本组的表达。 $ \ mathbb {c}^*$ by $ f $的通用封面的回调产生了$ u $的无限环保$ u^f $。甲板组$ \ mathbb {z} $在$ u^f $上的动作诱导了$ \ mathbb {q} [t^{\ pm 1}] $ - $ h _*(u^f; \ m athbb {q}})上的模块结构。我们表明,亚历山大模块的扭转零件$ a _*(u^f; \ mathbb {q})$ $ h _*(u^f; \ mathbb {q})$携带规范$ \ mathbb {q} $ - 混合Hodge结构。我们还证明,覆盖地图$ u^f \ to u $诱导了亚历山大模块的扭转部分上的混合杂物结构形态。作为应用程序,我们研究了$ a _*(u^f; \ mathbb {q})$的半透明性,以及构造的混合霍奇结构的可能权重。最后,如果$ f \ colon u \ to \ mathbb {c}^*$是正确的,我们证明了$ a _*(u^f; \ \ m mathbb {q})$的半膜片性和纯度,并且我们比较了我们在$ a _*f;^f; \ mathbbbbbbbbb; \ m m mathbb的od thenties of的混合hodge结构中的hodge结构。 $ f $。

Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety. More precisely, let $U$ be a smooth connected complex algebraic variety and let $f\colon U\to \mathbb{C}^*$ be an algebraic map inducing an epimorphism in fundamental groups. The pullback of the universal cover of $\mathbb{C}^*$ by $f$ gives rise to an infinite cyclic cover $U^f$ of $U$. The action of the deck group $\mathbb{Z}$ on $U^f$ induces a $\mathbb{Q}[t^{\pm 1}]$-module structure on $H_*(U^f;\mathbb{Q})$. We show that the torsion parts $A_*(U^f;\mathbb{Q})$ of the Alexander modules $H_*(U^f;\mathbb{Q})$ carry canonical $\mathbb{Q}$-mixed Hodge structures. We also prove that the covering map $U^f \to U$ induces a mixed Hodge structure morphism on the torsion parts of the Alexander modules. As applications, we investigate the semisimplicity of $A_*(U^f;\mathbb{Q})$, as well as possible weights of the constructed mixed Hodge structures. Finally, in the case when $f\colon U\to \mathbb{C}^*$ is proper, we prove the semisimplicity and purity of $A_*(U^f;\mathbb{Q})$, and we compare our mixed Hodge structure on $A_*(U^f;\mathbb{Q})$ with the limit mixed Hodge structure on the generic fiber of $f$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源