论文标题
严格的测量误差校正
Rigorous measurement error correction
论文作者
论文摘要
我们回顾了一种实验技术,用于纠正基于门的量子计算机上的状态准备和测量误差,并讨论其严格的理由。在特定偏见的量子测量模型中,我们证明,任意$ n $ qubit状态的非理想测量等同于理想的投影测量,然后是经典的马尔可夫进程$γ$作用于输出概率分布。如果可以学习并倒入$γ$,则可以通过严格的理由来删除测量错误。我们展示了如何从Gate Set断层扫描(R. Blume-Kohout等人,Arxiv:1310.4492)获得$γ$,并将误差校正技术应用于单个IBM Q超导量子。
We review an experimental technique used to correct state preparation and measurement errors on gate-based quantum computers, and discuss its rigorous justification. Within a specific biased quantum measurement model, we prove that nonideal measurement of an arbitrary $n$-qubit state is equivalent to ideal projective measurement followed by a classical Markov process $Γ$ acting on the output probability distribution. Measurement errors can be removed, with rigorous justification, if $Γ$ can be learned and inverted. We show how to obtain $Γ$ from gate set tomography (R. Blume-Kohout et al., arXiv:1310.4492) and apply the error correction technique to single IBM Q superconducting qubits.