论文标题
关于将高斯过程建模应用于确定性函数的推断
On the Inference of Applying Gaussian Process Modeling to a Deterministic Function
论文作者
论文摘要
高斯流程建模是用于构建计算机实验的模拟器的标准工具,该工具通常用于研究确定性功能,例如,解决给定的部分微分方程系统的解决方案。这项工作研究了从预测和不确定性量化的角度将高斯过程建模应用于确定性函数的工作,其中高斯过程模型被误指定。具体而言,我们考虑了固定基础函数并从某些内核函数生成的再现内核希尔伯特空间的情况下,并且在高斯过程建模中使用相同的内核函数作为预测和不确定性量化的相关函数。尽管在文献中已经对高斯过程建模中的上限和最佳预测率进行了广泛的研究,但缺乏对收敛速率的全面探索和对不确定性定量的理论研究。我们证明,如果人们使用最大似然估计来估计高斯过程建模的差异,那么在正则化参数值的不同选择下,预测器不是最佳和/或置信区间不可靠。特别是,在正则化参数值的不同选择下,预测误差的下限。结果表明,如果一个人直接将高斯过程建模应用于固定函数,则无法同时实现置信区间的可靠性和预测变量的最佳性。
Gaussian process modeling is a standard tool for building emulators for computer experiments, which are usually used to study deterministic functions, for example, a solution to a given system of partial differential equations. This work investigates applying Gaussian process modeling to a deterministic function from prediction and uncertainty quantification perspectives, where the Gaussian process model is misspecified. Specifically, we consider the case where the underlying function is fixed and from a reproducing kernel Hilbert space generated by some kernel function, and the same kernel function is used in the Gaussian process modeling as the correlation function for prediction and uncertainty quantification. While upper bounds and the optimal convergence rate of prediction in the Gaussian process modeling have been extensively studied in the literature, a comprehensive exploration of convergence rates and theoretical study of uncertainty quantification is lacking. We prove that, if one uses maximum likelihood estimation to estimate the variance in Gaussian process modeling, under different choices of the regularization parameter value, the predictor is not optimal and/or the confidence interval is not reliable. In particular, lower bounds of the prediction error under different choices of the regularization parameter value are obtained. The results indicate that, if one directly applies Gaussian process modeling to a fixed function, the reliability of the confidence interval and the optimality of the predictor cannot be achieved at the same time.