论文标题

使用量子近似优化算法解决车辆路由问题

Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm

论文作者

Azad, Utkarsh, Behera, Bikash K., Ahmed, Emad A., Panigrahi, Prasanta K., Farouk, Ahmed

论文摘要

在本文中,我们描述了量子近似优化算法(QAOA)的用法,该算法是一种量子古典启发式,以解决合并优化和整数编程任务,称为车辆路由问题(VRP)。我们概述了VRP的ISING公式,并提出了一个详细的程序来解决VRP,通过使用IBM Qiskit平台最大程度地减少其模拟的Ising Hamiltonian。在这里,我们尝试找到有关VRP问题的解决方案:(4,2),(5,2)和(5,3),其中每个位置和K车辆都代表VRP问题。我们发现,QAOA的性能不仅取决于所使用的经典优化器,实现绝热路径的步骤P的数量,或者初始化参数的方式,还取决于问题实例本身。

In this paper, we describe the usage of the Quantum Approximate Optimization Algorithm (QAOA), which is a quantum-classical heuristic, to solve a combinatorial optimization and integer programming task known as Vehicle Routing Problem (VRP). We outline the Ising formulation for VRP and present a detailed procedure to solve VRP by minimizing its simulated Ising Hamiltonian using the IBM Qiskit platform. Here, we attempt to find solutions for the VRP problems: (4,2), (5,2), and (5,3), where each (n, k) represents a VRP problem with n locations and k vehicles. We find that the performance of QAOA is not just dependent upon the classical optimizer used, the number of steps p in which an adiabatic path is realized, or the way parameters are initialized, but also on the problem instance itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源