论文标题

关于Dirichlet Beta功能的复杂幅度

On the complex magnitude of Dirichlet beta function

论文作者

Kawalec, Artur

论文摘要

在本文中,我们得出了表示为Euler Prime产品的Dirichlet Beta函数$β(s)$的复杂幅度的表达式,并与Riemann Zeta函数的结果相似。我们还获得了$β(s)$的公式,适用于均匀且奇数$ k $ th的正整数参数,并为$β(k)$提出了一组生成的公式,最高$ 11 $ th订单,包括加泰罗尼亚州的常数并计算这些公式。此外,我们得出了$β(s)$的复杂幅度的第二个表达式,在临界条中有效,从中,我们从该公式中获得了用dirichlet beta函数在临界线上的零零表示的欧拉 - 摩斯雪旋式常数。最后,我们研究了临界线上Euler Prime产品的渐近行为。

In this article, we derive an expression for the complex magnitude of the Dirichlet beta function $β(s)$ represented as a Euler prime product and compare with similar results for the Riemann zeta function. We also obtain formulas for $β(s)$ valid for an even and odd $k$th positive integer argument and present a set of generated formulas for $β(k)$ up to $11$th order, including Catalan's constant and compute these formulas numerically. Additionally, we derive a second expression for the complex magnitude of $β(s)$ valid in the critical strip from which we obtain a formula for the Euler-Mascheroni constant expressed in terms of zeros of the Dirichlet beta function on the critical line. Finally, we investigate the asymptotic behavior of the Euler prime product on the critical line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源