论文标题
非马克维亚固定过程的罕见事件动力学和对聚合物动力学的应用
Kinetics of rare events for non-Markovian stationary processes and application to polymer dynamics
论文作者
论文摘要
波动系统(例如聚合物链)需要多少时间才能达到很少访问的目标配置 - 通常是由于高能源成本?这个问题通常等于确定较低职业概率的相位空间中目标区域的第一分时间统计信息。在这里,我们提出了一种分析方法,以确定通用非马克维亚随机助行器的平均第一学期时间到较少访问的阈值,这超出了现有的弱点理论。我们将方法应用于聚合物系统,以确定(i)柔性聚合物达到较大延伸的第一次,以及(ii)刚性不可延迟的蠕虫状链的第一个闭合时间。我们的结果与数值模拟非常吻合,并为平均第一学期时间提供明确的渐近定律,以使访问的配置很少。
How much time does it take for a fluctuating system, such as a polymer chain, to reach a target configuration that is rarely visited -- typically because of a high energy cost ? This question generally amounts to the determination of the first-passage time statistics to a target zone in phase space with lower occupation probability. Here, we present an analytical method to determine the mean first-passage time of a generic non-Markovian random walker to a rarely visited threshold, which goes beyond existing weak-noise theories. We apply our method to polymer systems, to determine (i) the first time for a flexible polymer to reach a large extension, and (ii) the first closure time of a stiff inextensible wormlike chain. Our results are in excellent agreement with numerical simulations and provide explicit asymptotic laws for the mean first-passage times to rarely visited configurations.