论文标题
定理中心的组合方法
A combinatorial approach to central to theorem
论文作者
论文摘要
H. Furstenberg在拓扑动力学方面介绍了中央集合的概念,并确立了中央集定理。中央集合定理的本质是,它同时扩展了van der Waerden定理和Hindman定理。后来,V。Bergelson和N. Hindman建立了中央集合与石技术压实代数之间的联系,并证明了中央集合是离散半群的最小势力超级滤波器的成员。在随后的一些论文中,中央定理进行了更深入的研究,并建立了一些概括。这些作品使用离散半群的石技术紧凑技术的技术。在这项工作中,我们将使用N. Hindman,A。Malkeki和D. Strauss建立的中央集合的组合表征通过组合方法来证明中央定理。尽管我们将使用组合方法,但证明的技术类似于D. de,N。Hindman,D。Strauss的证明。
H. Furstenberg introduced the notion of central set in terms of topological dynamics and established the central set theorem. The essence of central set theorem is that it is the simultaneous extension of van der Waerden's theorem and Hindman's theorem. Later V. Bergelson and N. Hindman established a connection between central sets and the algebra of Stone-cech compactification and proved that the central sets are the member of minimal idempotent ultrafilter of discrete semigroup. In some subsequent papers the central set theorem has been studied more deeply and some generalizations has been established. Those works use the techniques of Stone-Cech compactification of discrete semigroup. In this work we will prove central set theorem via combinatorial approach using the combinatorial characterization of central set established by N. Hindman, A. Malkeki and D. Strauss. Though we will use the combinatorial approach but the technique of the proof is similar to the proof of D. De, N. Hindman, D. Strauss.