论文标题

多个变量的双重数字的多项式函数

Polynomial functions over dual numbers of several variables

论文作者

Al-Maktry, A. A. A.

论文摘要

令$ k \ in \ mathbb {n} \ setMinus \ {0 \} $。对于$ r $ $ r $的双数$ r $的双重戒指,$ r $的双重戒指是商ring $ r [x_1,\ ldots,x_k]/ i $,其中$ i $是集合$ \ {x_ix_j \ mid I,j = 1,j = 1,j = 1,j = 1,\ ldots,\ ldots,k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \。该戒指可以被视为$ r [α_1,\ ldots,α_k] $,带有$α_iα_j= 0 $,其中$α_i= x_i+i $ for $ i,$ i,j = 1,\ ldots,k $。每当$ r $是有限的交换环时,我们都会研究$ r [α_1,\ ldots,α_k] $的多项式函数。我们根据$ r [α_1,\ ldots,α_k] $的多项式函数数量和多项式排列的数量得出计数公式,这取决于$ r [α_1,\ ldots $ r [α_1,\ ldots的多项式置换量的代数稳定器$ r $ r $的点稳定剂的顺序。此外,我们表明$ r $的稳定器组独立于变量$ k $的数量。此外,我们证明$ r [α_1,\ ldots,α_k] $上的功能$ f $是一个多项式函数。

Let $k\in \mathbb{N}\setminus\{0\}$. For a commutative ring $R$, the ring of dual numbers of $k$ variables over $R$ is the quotient ring $R[x_1,\ldots,x_k]/ I $, where $I$ is the ideal generated by the set $\{x_ix_j\mid i,j=1,\ldots,k\}$. This ring can be viewed as $R[α_1,\ldots,α_k]$ with $α_i α_j=0$, where $α_i=x_i+I$ for $i,j=1,\ldots,k$. We investigate the polynomial functions of $R[α_1,\ldots,α_k]$ whenever $R$ is a finite commutative ring. We derive counting formulas for the number of polynomial functions and polynomial permutations on $R[α_1,\ldots,α_k]$ depending on the order of the pointwise stabilizer of the subring of constants $R$ in the group of polynomial permutations of $R[α_1,\ldots,α_k]$. Further, we show that the stabilizer group of $R$ is independent of the number of variables $k$. Moreover, we prove that a function $F$ on $R[α_1,\ldots,α_k]$ is a polynomial function if and only if a system of linear equations on $R$ that depends on $F$ has a solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源