论文标题

包装$(p,\,q)$的许多副本 - 图

Packing a number of copies of a $(p,\,q)$-graph

论文作者

Wang, Yun, Yan, Jin

论文摘要

令$ k,p,q $为三个正整数。如果$ n $ n $ vertices上的完整图中有$ k $ g $ $ g $,则具有$ n $ $ n $的图$ g $可驱动$ k $。 a $(p,\,q)$ - 图是$ q $ edges的订单$ p $的图。事实证明,包装结果在研究图性能的复杂性研究中很有用。 Bollobás等。调查了$ K $ - 可将$(n,\,n-2)$ - 图形和$(n,\,n-1)$ - $ k = 2 $和$ k = 3 $的图形。本文以其结果的启发,表征了$(n,\,n-1)$ - 带有至少$ 9 $的$ 4 $ $固定的图形。我们还考虑$ k $可添加$(n,\,n+1)$ - 图形和2因子。

Let $k,p,q$ be three positive integers. A graph $G$ with order $n$ is said to be $k$-placeable if there are $k$ edge disjoint copies of $G$ in the complete graph on $n$ vertices. A $(p,\,q)$-graph is a graph of order $p$ with $q$ edges. Packing results have proved useful in the study of the complexity of graph properties. Bollobás et al. investigated the $k$-placeable of $(n,\,n-2)$-graphs and $(n,\,n-1)$-graphs with $k=2$ and $k=3$. Motivated by their results, this paper characterizes $(n,\,n-1)$-graphs with girth at least $9$ which are $4$-placeable. We also consider the $k$-placeable of $(n,\,n+1)$-graphs and 2-factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源