论文标题

在少说的同时透露很多:状态更新的预测无线

Revealing Much While Saying Less: Predictive Wireless for Status Update

论文作者

Jiang, Zhiyuan, Cao, Zixu, Fu, Siyu, Peng, Fei, Cao, Shan, Zhang, Shunqing, Xu, Shugong

论文摘要

状态更新的无线通信变得越来越重要,尤其是对于机器类型的控制应用程序。现有工作主要集中于信息时代(AOI)优化。在本文中,提出了一种状态感知的预测无线接口设计,网络和实现,旨在通过利用在线状态模型预测来最大程度地减少无线网络系统的状态恢复错误。解决了预测状态更新的两个关键问题:实用性和实用性。进行了软件定义的Radio(SDR)测试床上的链接级实验,测试结果表明,所提出的设计可以显着减少无线传输的数量,同时保持较低的状态恢复误差。提出了一种具有状态意识的多代理增强学习网络解决方案(SMART),以动态和自主控制基于其各个状态的临时网络中设备的发送决策。在道路交通模拟器上进行了多强度平台场景的系统级模拟。结果表明,与AOI优化的状态 - 非洲和通信潜伏期优化方案相比,提出的方案可以大大改善连续车辆之间的最小安全距离的排量控制性能 - 这证明了我们在现实世界中我们提出的状态更新方案的有用性。

Wireless communications for status update are becoming increasingly important, especially for machine-type control applications. Existing work has been mainly focused on Age of Information (AoI) optimizations. In this paper, a status-aware predictive wireless interface design, networking and implementation are presented which aim to minimize the status recovery error of a wireless networked system by leveraging online status model predictions. Two critical issues of predictive status update are addressed: practicality and usefulness. Link-level experiments on a Software-Defined-Radio (SDR) testbed are conducted and test results show that the proposed design can significantly reduce the number of wireless transmissions while maintaining a low status recovery error. A Status-aware Multi-Agent Reinforcement learning neTworking solution (SMART) is proposed to dynamically and autonomously control the transmit decisions of devices in an ad hoc network based on their individual statuses. System-level simulations of a multi dense platooning scenario are carried out on a road traffic simulator. Results show that the proposed schemes can greatly improve the platooning control performance in terms of the minimum safe distance between successive vehicles, in comparison with the AoI-optimized status-unaware and communication latency-optimized schemes---this demonstrates the usefulness of our proposed status update schemes in a real-world application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源