论文标题

实验自适应贝叶斯对多个阶段的估计有限

Experimental adaptive Bayesian estimation of multiple phases with limited data

论文作者

Valeri, Mauro, Polino, Emanuele, Poderini, Davide, Gianani, Ilaria, Corrielli, Giacomo, Crespi, Andrea, Osellame, Roberto, Spagnolo, Nicolò, Sciarrino, Fabio

论文摘要

在估计过程中实现最终界限是量子计量学的主要目标。在这种情况下,几个问题需要通过仅使用有限数量的资源来测量多个参数。为此,自适应协议利用其他控制参数,提供了一种工具,以优化量子传感器的性能以在这种有限的数据状态下工作。在估计过程中找到最佳策略来调整控制参数是一个非平凡的问题,机器学习技术是解决此类任务的自然解决方案。在这里,我们首次通过实验进行了实验调查和实施,该自适应贝叶斯多参数计估计技术量身定制,以达到具有非常有限的数据的最佳性能。我们采用紧凑而灵活的集成光子电路,该电路由飞秒激光写作制造,该电路允许高度控制的不同策略实施不同的策略。获得的结果表明,自适应策略可以成为使用有限资源的现实传感器的可行方法。

Achieving ultimate bounds in estimation processes is the main objective of quantum metrology. In this context, several problems require measurement of multiple parameters by employing only a limited amount of resources. To this end, adaptive protocols, exploiting additional control parameters, provide a tool to optimize the performance of a quantum sensor to work in such limited data regime. Finding the optimal strategies to tune the control parameters during the estimation process is a non-trivial problem, and machine learning techniques are a natural solution to address such task. Here, we investigate and implement experimentally for the first time an adaptive Bayesian multiparameter estimation technique tailored to reach optimal performances with very limited data. We employ a compact and flexible integrated photonic circuit, fabricated by femtosecond laser writing, which allows to implement different strategies with high degree of control. The obtained results show that adaptive strategies can become a viable approach for realistic sensors working with a limited amount of resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源