论文标题
从最佳运输到差异
From Optimal Transport to Discrepancy
论文作者
论文摘要
量化度量之间距离的一种常见方法是通过它们的差异,也称为最大平均差异(MMD)。差异与sindhorn Diverences $ s_ \ varepsilon $具有适当的成本函数为$ \ varepsilon \ to \ infty $。在相反的方向上,如果$ \ varepsilon \ to 0 $,sindhorn的脱落接近度量之间的另一个重要距离,即瓦斯尔斯坦距离或更一般的最佳运输,距离''。在本章中,我们研究了紧凑型集和Lipschitz连续成本功能的任意度量的限制过程。特别是,我们对相应的最佳电位的行为$ \hatφ_\ varepsilon $,$ \ hatψ_\ varepsilon $和$ \ hatφ_k$分别出现在Sinkhorn Diverence和差异的双重配方中。尽管结果的一部分是已知的,但我们为某些关系提供了严格的证据,而这些关系在文献中尚未发现。最后,我们通过数值示例来证明限制过程,并在称为“抖动”过程中按点测量近似尺寸近似时,显示了距离的行为。
A common way to quantify the ,,distance'' between measures is via their discrepancy, also known as maximum mean discrepancy (MMD). Discrepancies are related to Sinkhorn divergences $S_\varepsilon$ with appropriate cost functions as $\varepsilon \to \infty$. In the opposite direction, if $\varepsilon \to 0$, Sinkhorn divergences approach another important distance between measures, namely the Wasserstein distance or more generally optimal transport ,,distance''. In this chapter, we investigate the limiting process for arbitrary measures on compact sets and Lipschitz continuous cost functions. In particular, we are interested in the behavior of the corresponding optimal potentials $\hat φ_\varepsilon$, $\hat ψ_\varepsilon$ and $\hat φ_K$ appearing in the dual formulation of the Sinkhorn divergences and discrepancies, respectively. While part of the results are known, we provide rigorous proofs for some relations which we have not found in this generality in the literature. Finally, we demonstrate the limiting process by numerical examples and show the behavior of the distances when used for the approximation of measures by point measures in a process called dithering.