论文标题
选择性分割网络使用自上而下的注意力
Selective Segmentation Networks Using Top-Down Attention
论文作者
论文摘要
卷积神经网络对网络层次结构底部的输入感觉数据的转换为视觉层次结构顶部的语义信息。 FeedForward处理足以满足某些对象识别任务。除了自下而上的进发pass之外,还需要自上而下的选择。它可以部分解决层次特征金字塔施加的位置信息丢失的缺点。我们为对象分割提出了一个统一的2件通用框架,该框架通过自上而下的选择网络增强自下而上的\ convnet。我们利用自上而下的选择门控活动来调节自下而上的隐藏活动以进行分割预测。我们开发了一个端到端的多任务框架,其损失条款满足网络两端的任务要求。我们在基准数据集上评估了提出的网络以进行语义分割,并显示具有自上而下选择能力的网络优于基线模型。此外,我们阐明了新的分割范式的优越方面,并在定性上和定量地支持了纯粹依赖参数跳过连接的基线模型的新框架的效率。
Convolutional neural networks model the transformation of the input sensory data at the bottom of a network hierarchy to the semantic information at the top of the visual hierarchy. Feedforward processing is sufficient for some object recognition tasks. Top-Down selection is potentially required in addition to the Bottom-Up feedforward pass. It can, in part, address the shortcoming of the loss of location information imposed by the hierarchical feature pyramids. We propose a unified 2-pass framework for object segmentation that augments Bottom-Up \convnets with a Top-Down selection network. We utilize the top-down selection gating activities to modulate the bottom-up hidden activities for segmentation predictions. We develop an end-to-end multi-task framework with loss terms satisfying task requirements at the two ends of the network. We evaluate the proposed network on benchmark datasets for semantic segmentation, and show that networks with the Top-Down selection capability outperform the baseline model. Additionally, we shed light on the superior aspects of the new segmentation paradigm and qualitatively and quantitatively support the efficiency of the novel framework over the baseline model that relies purely on parametric skip connections.