论文标题

通过潜在正规化高斯混合物生成对抗网络检测声学异常

Acoustic anomaly detection via latent regularized gaussian mixture generative adversarial networks

论文作者

Chen, Chengwei, Chen, Pan, Yang, Lingyu, Mo, Jinyuan, Song, Haichuan, Xie, Yuan, Ma, Lizhuang

论文摘要

声学异常检测旨在区分异常声学和正常声学信号。它遭受了阶级不平衡问题的困扰,并且缺乏异常情况。此外,为训练目的收集各种异常或未知的样本是不切实际的和时间的。在本文中,在半监督的学习框架下提出了一种新型的高斯混合物生成对抗网络(GMGAN),其中训练数据的潜在结构不仅在光谱重建空间中被捕获,而且可以在潜在表示的空间中以歧视性的方式进一步限制。实验表明,我们的模型比以前的方法具有明显的优势,并在DCASE数据集上实现了最新结果。

Acoustic anomaly detection aims at distinguishing abnormal acoustic signals from the normal ones. It suffers from the class imbalance issue and the lacking in the abnormal instances. In addition, collecting all kinds of abnormal or unknown samples for training purpose is impractical and timeconsuming. In this paper, a novel Gaussian Mixture Generative Adversarial Network (GMGAN) is proposed under semi-supervised learning framework, in which the underlying structure of training data is not only captured in spectrogram reconstruction space, but also can be further restricted in the space of latent representation in a discriminant manner. Experiments show that our model has clear superiority over previous methods, and achieves the state-of-the-art results on DCASE dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源