论文标题
PPG信号混乱了吗?
Is the PPG signal chaotic?
论文作者
论文摘要
本文展示了光插图学信号(PPG)信号的动力学是一种易于访问的生物学信号,可以从中从中提取出有价值的诊断信息,即在不同的时间表上进行的年轻和健康个体的诊断信息。在小时尺度上,PPG信号的动态行为主要是准周期性的。在较大的时间范围内,出现了更复杂的动态多样性,但正如早期研究所报道的那样,从来没有混乱的行为。确定PPG信号的动力学的过程包括将PPG信号的动力学与本研究中的众所周知的动力学进行对比 - 在本研究中命名的参考信号 - 主要存在于物理系统中,例如周期性的,Quasi-periodic,quasi-periodic,aperiodic,aperiodic,chaotic,chaotic,chaotic或andarty动力学。为此,本文提供了两种基于深神经网络(DNN)体系结构的分析方法。前者使用卷积神经网络(CNN)体系结构模型。在使用参考信号训练后,CNN模型可以在不同的时间范围内识别PPG信号中存在的动力学,并根据分类过程分配了每个时间的概率。后者基于长期记忆(LSTM)体系结构使用了复发性神经网络(RNN)。对于每个信号,无论是参考信号还是PPG信号,RNN模型都基于训练数据来渗透进化函数(非线性回归模型),并考虑其在相对较短的时间范围内的预测能力。
This paper shows how the dynamics of the PhotoPlethysmoGraphic (PPG) signal, an easily accessible biological signal from which valuable diagnostic information can be extracted, of young and healthy individuals performs at different timescales. On a small timescale, the dynamic behavior of the PPG signal is predominantly quasi-periodic. On a large timescale, a more complex dynamic diversity emerges, but never a chaotic behavior as earlier studies had reported. The procedure by which the dynamics of the PPG signal is determined consists of contrasting the dynamics of a PPG signal with well-known dynamics---named reference signals in this study---, mostly present in physical systems, such as periodic, quasi-periodic, aperiodic, chaotic or random dynamics. For this purpose, this paper provides two methods of analysis based on Deep Neural Network (DNN) architectures. The former uses a Convolutional Neural Network (CNN) architecture model. Upon training with reference signals, the CNN model identifies the dynamics present in the PPG signal at different timescales, assigning, according to a classification process, an occurrence probability to each of them. The latter uses a Recurrent Neural Network (RNN) based on a Long Short-Term Memory (LSTM) architecture. With each of the signals, whether reference signals or PPG signals, the RNN model infers an evolution function (nonlinear regression model) based on training data, and considers its predictive capability over a relatively short time horizon.