论文标题

有效的2D神经元边界分割具有局部拓扑约束

Efficient 2D neuron boundary segmentation with local topological constraints

论文作者

Ambegoda, Thanuja D., Cook, Matthew

论文摘要

我们提出了一种在2D电子显微镜图像中分割神经元膜的方法。这项分割任务一直是大脑突触电路重建工作的瓶颈。一个常见的问题是将模糊的膜片段分类为细胞内部,从而通过模糊的膜区域将两个相邻神经元切片合并为一个。考虑到膜的连续性,人类注释者可以通过隐式执行差距的完成来轻松避免此类错误。 从这些人类策略中汲取灵感,我们将分割任务制定为具有局部拓扑约束的图表上的边缘标签问题。我们得出了一个整数线性程序(ILP),该程序可以强制执行膜连续性,即没有间隙。 ILP的成本函数是分割与从数据中得出的先验膜概率的分割的像素偏差。 基于使用随机森林分类器和卷积神经网络获得的膜概率图,我们的方法与多种标准分割方法相比提高了神经元边界分割的精度。我们的方法成功执行差距完成,并导致更少的拓扑错误。该方法也可以将其纳入具有已知拓扑约束的其他图像分割管道中。

We present a method for segmenting neuron membranes in 2D electron microscopy imagery. This segmentation task has been a bottleneck to reconstruction efforts of the brain's synaptic circuits. One common problem is the misclassification of blurry membrane fragments as cell interior, which leads to merging of two adjacent neuron sections into one via the blurry membrane region. Human annotators can easily avoid such errors by implicitly performing gap completion, taking into account the continuity of membranes. Drawing inspiration from these human strategies, we formulate the segmentation task as an edge labeling problem on a graph with local topological constraints. We derive an integer linear program (ILP) that enforces membrane continuity, i.e. the absence of gaps. The cost function of the ILP is the pixel-wise deviation of the segmentation from a priori membrane probabilities derived from the data. Based on membrane probability maps obtained using random forest classifiers and convolutional neural networks, our method improves the neuron boundary segmentation accuracy compared to a variety of standard segmentation approaches. Our method successfully performs gap completion and leads to fewer topological errors. The method could potentially also be incorporated into other image segmentation pipelines with known topological constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源