论文标题
剥离的envelope核心折叠超新星$^{56} $ ni masses:持续比超新星II的值持续更大
Stripped-envelope core-collapse supernova $^{56}$Ni masses: Persistently larger values than supernovae type II
论文作者
论文摘要
合成的放射性材料的质量是所有超新星(SN)类型的重要电源。 Anderson 2019最近汇编了文献价值,并获得了不同核心 - 循环超新星(CC-SNE)的$^{56} $ ni分布,表明$^{56} $ ni分布在剥离的包膜CC-SNE(se-sne:类型IIB,IB和IC)与Hyderogen II se Sne(Sne)高度不相容(Se-Sne)高度不相容。这激发了有关祖细胞,爆炸机制和$^{56} $ NI估计方法的差异的问题。在这里,我们重新估计$^{56} $ ni的核合成产量,以均匀观察和定义明确的SE-SNE样本。这使我们能够调查观察到的SN-II-SE-SN $^{56} $ ni分离是由于这些SN类型之间的实际差异,还是由于估计方法中的系统错误。我们通过文献中提出的三种不同方法编制了一个经过良好观察到的Se-Sne的样本,并测量了$^{56} $ ni群众。 Arnett的规则 - 如前所述 - 给出了$^{56} $ ni Masses,用于Se -Sne,其高于SNE -II。对于使用Khatami&Kasen处方和Tail $^{56} $ ni Masses计算出的分布,其值却低于“ Arnett值”,但它们的$^{56} $ ni分布仍在统计上高于Sne II的统计学上的分布。我们的结果是由于缺乏低$^{56} $ ni群众的SE-SN的强烈驱动(严格的下限是另外的)。我们的样本中最低的SE-SN $^{56} $ NI质量为0.015亿美元$ _ \ odot $,低于Sne II的25 $ \%$。我们得出的结论是,在SNE II和SE-SNE之间合成的放射性物质质量中存在真实的,内在的差异。任何提出的当前或将来的CCSN祖细胞场景和爆炸机制都必须能够解释为什么以及如何出现这种差异,或概述尚未完全探索的当前SN样本中的偏见。
The mass of synthesised radioactive material is an important power source for all supernova (SN) types. Anderson 2019 recently compiled literature values and obtained $^{56}$Ni distributions for different core-collapse supernovae (CC-SNe), showing that the $^{56}$Ni distribution of stripped envelope CC-SNe (SE-SNe: types IIb, Ib, and Ic) is highly incompatible with that of hydrogen rich type II SNe (SNe-II). This motivates questions on differences in progenitors, explosion mechanisms, and $^{56}$Ni estimation methods. Here, we re-estimate the nucleosynthetic yields of $^{56}$Ni for a well-observed and well-defined sample of SE-SNe in a uniform manner. This allows us to investigate whether the observed SN-II--SE-SN $^{56}$Ni separation is due to real differences between these SN types, or because of systematic errors in the estimation methods. We compiled a sample of well observed SE-SNe and measured $^{56}$Ni masses through three different methods proposed in the literature. Arnett's rule -as previously shown - gives $^{56}$Ni masses for SE-SNe that are considerably higher than SNe-II. While for the distributions calculated using both the Khatami&Kasen prescription and Tail $^{56}$Ni masses are offset to lower values than `Arnett values', their $^{56}$Ni distributions are still statistically higher than that of SNe II. Our results are strongly driven by a lack of SE-SN with low $^{56}$Ni masses (that are in addition strictly lower limits). The lowest SE-SN $^{56}$Ni mass in our sample is of 0.015M$_\odot$, below which are more than 25$\%$ of SNe II. We conclude that there exists real, intrinsic differences in the mass of synthesised radioactive material between SNe II and SE-SNe . Any proposed current or future CCSN progenitor scenario and explosion mechanism must be able to explain why and how such differences arise, or outline a yet to be fully explored bias in current SN samples.