论文标题

通过对纵向数据的对抗训练改善了扫描仪间MS病变细分

Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data

论文作者

Billast, Mattias, Meyer, Maria Ines, Sima, Diana M., Robben, David

论文摘要

白质病变进展的评估是MS患者随访的重要生物标志物,在决定治疗过程时起着至关重要的作用。当前的自动病变分割算法易受与MRI扫描仪或协议差异相关的图像特征的可变性。我们提出了一个模型,该模型可以改善MS病变分割的一致性。首先,我们训练CNN基本模型,以近似iCobrain的性能,Icobrain是FDA批准的临床可用病变细分软件。然后,训练了一个鉴别模型,以预测使用相同的扫描仪类型获得的扫描是否基于两个病变细分,在此任务中达到了78%的精度。最后,基本模型和鉴别器在多扫描仪纵向数据上受到对抗的训练,以提高基本模型的扫描仪一致性。在包含手动描述的看不见的数据集上评估模型的性能。在重测数据上评估了扫描仪之间的变异性,在该数据中,对抗网络对基本模型和FDA批准的解决方案产生改进的结果。

The evaluation of white matter lesion progression is an important biomarker in the follow-up of MS patients and plays a crucial role when deciding the course of treatment. Current automated lesion segmentation algorithms are susceptible to variability in image characteristics related to MRI scanner or protocol differences. We propose a model that improves the consistency of MS lesion segmentations in inter-scanner studies. First, we train a CNN base model to approximate the performance of icobrain, an FDA-approved clinically available lesion segmentation software. A discriminator model is then trained to predict if two lesion segmentations are based on scans acquired using the same scanner type or not, achieving a 78% accuracy in this task. Finally, the base model and the discriminator are trained adversarially on multi-scanner longitudinal data to improve the inter-scanner consistency of the base model. The performance of the models is evaluated on an unseen dataset containing manual delineations. The inter-scanner variability is evaluated on test-retest data, where the adversarial network produces improved results over the base model and the FDA-approved solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源