论文标题
一夫一妻制的纠缠四量纯状态的约束
Monogamy constraints on entanglement of four-qubit pure states
论文作者
论文摘要
我们报告了一组对一般四Q Qubit纯状态的一键,两键,三角,三角和四向相关性的一夫一妻制约束。发现给定四个Qubit纯状态$ \ left \ weft \vertψ_{4} \ right \ rangle $的两个Qubit pubit put态$ \ langle $,non-hermitian matrix $ρ\widetildeρ$ wher ρ^{\ ast} \ left(σ_{y} \otimesσ_{y} \ right)$,不仅包含有关状态$ρ$中两个问题的纠缠属性的信息$。为了提取有关四量状状态$ \ left \ wertψ_{4} \ right \ rangle $的缠结的信息,用矩阵$ρ\widetildeρ$分析表达了$ 2 \ times times 2 $ atteceficients的特征多项式的系数。四角区分不同类型的纠缠的四量纯状态。
We report a set of monogamy constraints on one-tangle, two-tangles, three-tangles and four-way correlations of a general four-qubit pure state. It is found that given a two-qubit marginal state $ρ$ of a four qubit pure state $\left\vert Ψ_{4}\right\rangle $, the non-Hermitian matrix $ρ\widetildeρ$ where $\widetildeρ$ $=\left( σ_{y} \otimesσ_{y}\right) ρ^{\ast}\left( σ_{y}\otimesσ_{y}\right) $, contains information not only about the entanglement properties of the two-qubits in state $ρ$ but also about three tangles involving the selected pair as well as four-way correlations of the pair of qubits in $\left\vert Ψ_{4}\right\rangle $. To extract information about tangles of a four-qubit state $\left\vert Ψ_{4}\right\rangle $, the coefficients in the characteristic polynomial of matrix $ρ\widetildeρ$ are analytically expressed in terms of $2\times2$ matrices of state coefficients. Four-tangles distinguish between different types of entangled four-qubit pure states.