论文标题
皮秒多级电阻转换氧化薄膜薄膜
Picosecond Multilevel Resistive Switching in Tantalum Oxide Thin Films
论文作者
论文摘要
对高密度数据存储的需求不断增长,导致人们对具有高扩展性的新型记忆概念以及将多个位存储在一个单元格中的机会增加。有希望的候选人是基于氧化还原的电阻开关,以不同的电阻状态形式重新列出信息。对于可靠的编程,需要理解潜在的物理参数。我们揭示可编程阻力状态与内部串联电阻和基本非线性切换动力学有关。基于TA $ _ {2} $ o $ _ {5} $ - 基于15个数量级的宽范围从250 ps到10 $^{5} $ s的开关动力学。我们找到了与模拟电子电路模拟一致的10 ps开关速度的有力证据。在所有时间尺度上,都证明了多位数据存储功能。基本材料属性与多位数据存储之间的阐明链接为设计电阻开关的方式铺平了道路,以用于内存和神经形态应用。
The increasing demand for high-density data storage leads to an increasing interest in novel memory concepts with high scalability and the opportunity of storing multiple bits in one cell. A promising candidate is the redox-based resistive switch repositing the information in form of different resistance states. For reliable programming, the underlying physical parameters need to be understood. We reveal that the programmable resistance states are linked to internal series resistances and the fundamental nonlinear switching kinetics. The switching kinetics of Ta$_{2}$O$_{5}$-based cells was investigated in a wide range over 15 orders of magnitude from 250 ps to 10$^{5}$ s. We found strong evidence for a switching speed of 10 ps which is consistent with analog electronic circuit simulations. On all time scales, multi-bit data storage capabilities were demonstrated. The elucidated link between fundamental material properties and multi-bit data storage paves the way for designing resistive switches for memory and neuromorphic applications.