论文标题

FAE:公平感知的合奏框架

FAE: A Fairness-Aware Ensemble Framework

论文作者

Iosifidis, Vasileios, Fetahu, Besnik, Ntoutsi, Eirini

论文摘要

基于大数据和机器学习(ML)算法的自动决策可能会导致对某些根据性别,种族,种族,性取向等的个人数据定义的群体的歧视性决策。旨在发现大数据中的模式的算法,这些算法不仅可以在训练数据中挑战任何编码的社会偏见,而且更糟糕的是,它们可能会更加严重地判断出了这种不满,因此会导致更加严重性。迄今为止,大多数提出的公平感知机器学习方法仅着眼于机器学习过程的预性,内部或后处理步骤,即输入数据,学习算法或衍生模型。但是,公平性问题不能隔离到ML过程的一个步骤。相反,歧视通常是大数据和算法之间复杂相互作用的结果,因此需要更全面的方法。所提出的FAE(公平意识合奏)框架在数据分析过程的前和后处理步骤中结合了与公平相关的干预措施。在预处理步骤中,我们通过生成平衡的培训样本来解决受保护群体(群体失衡)和班级失控的不足问题的问题。在后处理步骤中,我们通过在公平方向上移动决策边界来解决阶级重叠的问题。

Automated decision making based on big data and machine learning (ML) algorithms can result in discriminatory decisions against certain protected groups defined upon personal data like gender, race, sexual orientation etc. Such algorithms designed to discover patterns in big data might not only pick up any encoded societal biases in the training data, but even worse, they might reinforce such biases resulting in more severe discrimination. The majority of thus far proposed fairness-aware machine learning approaches focus solely on the pre-, in- or post-processing steps of the machine learning process, that is, input data, learning algorithms or derived models, respectively. However, the fairness problem cannot be isolated to a single step of the ML process. Rather, discrimination is often a result of complex interactions between big data and algorithms, and therefore, a more holistic approach is required. The proposed FAE (Fairness-Aware Ensemble) framework combines fairness-related interventions at both pre- and postprocessing steps of the data analysis process. In the preprocessing step, we tackle the problems of under-representation of the protected group (group imbalance) and of class-imbalance by generating balanced training samples. In the post-processing step, we tackle the problem of class overlapping by shifting the decision boundary in the direction of fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源