论文标题

从Orbifold数据构建模块化类别

Constructing modular categories from orbifold data

论文作者

Mulevicius, Vincentas, Runkel, Ingo

论文摘要

在Carqueville等人,Arxiv:1809.01483中,在模块化融合类别中的Orbifold Datum $ \ Mathbb {a} $的概念是作为Reshetikhin-Turaev tqfts的广义orbifold构造的一部分引入的。在本文中,给定一个简单的Orbifold Datum $ \ Mathbb {a} $中的$ \ Mathcal {C} $,我们引入了功能区类别$ \ MATHCAL {C} _ {\ MATHBB {A}} $,并再次显示它是一个模块化的融合类别。 $ \ Mathcal {C} _ {\ Mathbb {a}} $的定义是由Wilson Lines在广义Orbifold中的属性激励的。我们详细分析了两个示例:(i)当$ \ mathbb {a} $由简单的交换$δ$ -Separable frobenius algebra $ a $ in $ \ mathcal {c} $给出时; (ii)当$ \ mathbb {a} $是$ \ mathcal {c} = \ operatoTorname {vect} $中的Orbifold基准,它是由球形融合类别$ \ mathcal {s} $构建的。我们表明,在(i),$ \ mathcal {c} _ {\ mathbb {a}} $与$ a $的本地模块的类别相等,而在(ii)的类别上,则是$ \ mathcal {s} $的drinfeld中心。类别$ \ mathcal {c} _ {\ Mathbb {a}} $因此将这两个构造统一为单个代数设置。

In Carqueville et al., arXiv:1809.01483, the notion of an orbifold datum $\mathbb{A}$ in a modular fusion category $\mathcal{C}$ was introduced as part of a generalised orbifold construction for Reshetikhin-Turaev TQFTs. In this paper, given a simple orbifold datum $\mathbb{A}$ in $\mathcal{C}$, we introduce a ribbon category $\mathcal{C}_{\mathbb{A}}$ and show that it is again a modular fusion category. The definition of $\mathcal{C}_{\mathbb{A}}$ is motivated by properties of Wilson lines in the generalised orbifold. We analyse two examples in detail: (i) when $\mathbb{A}$ is given by a simple commutative $Δ$-separable Frobenius algebra $A$ in $\mathcal{C}$; (ii) when $\mathbb{A}$ is an orbifold datum in $\mathcal{C} = \operatorname{Vect}$, built from a spherical fusion category $\mathcal{S}$. We show that in case (i), $\mathcal{C}_{\mathbb{A}}$ is ribbon-equivalent to the category of local modules of $A$, and in case (ii), to the Drinfeld centre of $\mathcal{S}$. The category $\mathcal{C}_{\mathbb{A}}$ thus unifies these two constructions into a single algebraic setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源