论文标题
在半经典制度中计算量子动力学
Computing quantum dynamics in the semiclassical regime
论文作者
论文摘要
半经典缩放时间依赖性的多粒子schrödinger方程描述了分子中核的量子动力学。它构成了高振荡和高维度的综合计算挑战。本文回顾和研究了对小的半经典参数可靠的数值方法。我们介绍并分析了变异发展的高斯波数据包,Hagedorn的半经典波数据包,融化和冷冻高斯的连续叠加以及Wigner功能的方法,以直接计算可观察到的物品的期望值。充分利用古典力学对于所有这些方法至关重要。还讨论了时间整合的出现方面和高维正常。
The semiclassically scaled time-dependent multi-particle Schrödinger equation describes, inter alia, quantum dynamics of nuclei in a molecule. It poses the combined computational challenges of high oscillations and high dimensions. This paper reviews and studies numerical approaches that are robust to the small semiclassical parameter. We present and analyse variationally evolving Gaussian wave packets, Hagedorn's semiclassical wave packets, continuous superpositions of both thawed and frozen Gaussians, and Wigner function approaches to the direct computation of expectation values of observables. Making good use of classical mechanics is essential for all these approaches. The arising aspects of time integration and high-dimensional quadrature are also discussed.